|本期目录/Table of Contents|

[1]陈大旗,付 华,殷祝平,等.丝素蛋白取向水凝胶的研制[J].丝绸,2017,54(8):081101.[doi:10.3969/j.issn.1001-7003.2017.08.001]
 CHEN Daqi,FU Hua,YIN Zhuping,et al.Preparation of orientational silk fibroin hydrogels[J].Journal of Silk,2017,54(8):081101.[doi:10.3969/j.issn.1001-7003.2017.08.001]
点击复制

丝素蛋白取向水凝胶的研制(PDF)
分享到:

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
54
期数:
2017年8期
页码:
081101
栏目:
研究与技术
出版日期:
2017-08-20

文章信息/Info

Title:
Preparation of orientational silk fibroin hydrogels
文章编号:
1001-7003(2017)08-0001-07
作者:
陈大旗付 华殷祝平吴 峰薛 香卢神州
苏州大学 a. 纺织与服装工程学院;b.现代丝绸国家工程实验室,江苏 苏州 215123
Author(s):
CHEN Daqi FU Hua YIN Zhuping WU Feng XUE Xiang LU Shenzhou
 a.College of Textile and Clothing Engineering; b.National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
关键词:
丝素蛋白枯草菌脂肽钠剪切力取向性水凝胶机械性能
Keywords:
silk fibroin bacillus subtilis sodium surfactin shear force orientation hydrogels mechanical property
分类号:
TS102.33;TB383
doi:
10.3969/j.issn.1001-7003.2017.08.001
文献标志码:
A
摘要:
本研究采用丝素蛋白(SF)为原料,将枯草菌脂肽钠(SS)与丝素蛋白混合以缩短丝素蛋白溶液凝胶时间,并在凝胶过程中对SF/SS共混溶液施加机械剪切力,制备一种取向的SF/SS水凝胶。结果表明:在剪切速率为55 s-1下,当剪切时间为0~20 min时,SF/SS混合体系中分子构象呈现大量的无规卷曲,而在20 min至凝胶完全时,分子构象由无规卷曲向β-折叠结构转变;剪切诱导形成的SF/SS水凝胶具有显著的取向网状形貌,其取向方向的压缩强度是非取向方向、未剪切水凝胶的3.5倍,其垂直于取向方向的耐切割性能是未剪切、取向方向的2倍。SF/SS取向水凝胶可用于神经细胞、骨细胞的培养,以及缺陷肌肉、韧带组织的修复。
Abstract:
In this study, silk fibroin (SF) was adopted as raw material , bacillus subtilis sodium surfactin (SS) was blended with silk fibroin to shorten the g elation time of SF solution, and mechanical shear force was exerted on the blended solution of SF/SS in the gelation process to prepare an orientational SF/SS hydrogel. The results suggest that the molecular conformation of the SF/SS blending system takes on random coil it is subject to shearing for 0min to 20min at the rate of 55 s-1, while the molecular conformation transforms from random coil into β-sheet conformers during the period that it is subject to shearing for 20min until completely gelling; the shear-induced SF/SS hydrogels appears to be of obvious orientational gel skeleton/network morphology, its compressive strength in the direction of orientation is 3.5 times over that of unsheared hydrogel in the direction of non-orientation, and its cut resistance in the direction vertical to the direction of orientation is twice over that of unsheared hydrogel in the direction of orientation. SF/SS orientational hydrogels can be applied for culture of nerve cell and bone cell, and repairing of defect in muscle and ligament tissues.

参考文献/References:

[1]AMIN S, RAJABNEZHAD S, KOHLI K. Hydrogels as potential drug delivery systems[J]. Scientific Research and Essays, 2009,4(11):1175-1183.
[2]张宝萍, 许戈文, 黄毅萍. 丝素蛋白-聚氨酯复合水凝胶的制备及性能研究[J]. 高分子学报, 2012(9): 965-971.
ZHANG Baoping, XU Gewen, HUANG Yiping. Preparation and characterization of silk fibroin-polyurethane composite hydrogels[J].Acta Polymerica Sinica, 2012(9): 965-971.
[3]NUMATA K, KATASHIMA T, SAKAI T. State of water, molecular structure, and cytotoxicity of silk hydrogels[J]. Biomacromolecules, 2011,12(6):2137-2144.
[4]PEPPAS N A, BURES P, LEOBANDUNG W, et al. Hydrogels in pharmaceutical formulations[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1):27-46.
[5]HOFFMAN A S. Hydrogels for biomedical application[J]. Advanced Drug Delivery Reviews, 2012(64):18-23.
[6]JOHNSON J A, TURRO N J, KOBERSTEIN J T, et al. Some hydrogels having novel molecular structures[J]. Progress in Polymer Science, 2010, 35(3):332-337.
[7]HENNINK W E, VAN NOSTRUM C F. Novel crosslinking methods to design hydrogels[J]. Advanced Drug Delivery Reviews, 2002, 54(1):13-36.
[8]DRURY J L, MOONEY D J. Hydrogels for tissue engineering: scaffold design variables and applications[J]. Biomaterials, 2003, 24(24):4337-4351.
[9]LEE K Y, MOONEY D J. Hydrogels for tissue engineering[J]. Chemical Reviews, 2001, 101(7):1869-1880.
[10]RUDZINSKI W E, DAVE A M, VAISHNAV U H, et al. Hydrogels as controlled release devices in agriculture[J]. Designed Monomers & Polymers, 2002, 5(1):39-65.
[11]RAJKHOWA R, LEVIN B, REDMOND S L, et al. Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions[J]. Journal of Biomedical Materials Research:Part A, 2011, 97A(1):37-45.
[12]VEPARI C, KAPLAN D L. Silk as a biomaterials[J]. Progress in Polymer Science, 2007, 32(8/9):991-1007.
[13]CHAO P H, YODMAUANG S, WANG X, et al. Silk hydrogel for cartilage tissue engineering[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2010, 95(1):84-90.
[14]FOO C W P, BINI E, HENSMAN J, et al. Role of pH and charge on silk protein assembly in insects and spiders[J]. Applied Physics A, 2006, 82(2):223-233.
[15]LE T T, PARK Y, CHIRILA TV, et al. The behavior of aged regenerated bombyx mori silk fibroin solutions studied by 1H NMR and rheology[J]. Biomaterials, 2008, 29(32): 4268-4274.
[16]WU X, HOU J, LI M. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin[J]. Acta Biomaterialia, 2012, 8(6): 2185-2192.
[17]VINEY C, KERKAM K, LISA G, et al. Molecular order in silk secretions[J]. Materials Research Society Symposium Proceeding, 1992, 248: 89-94.
[18]VINEY C. Light microscopy of self-assembling biological macromolecules[J]. American Chemical Society Polymer Preprints, 1992, 33(1): 757-758.
[19]朱天, 张芳, 李姣姣, 等. 枯草菌脂肽钠/丝素蛋白复合水凝胶的研究[J]. 现代丝绸科学与技术, 2015, 30(5):161-164.
ZHU Tian, ZHANG Fang, LI Jiaojiao, et al. Study on bacillus subtilis lipopeptide/silk fibroin composite hydrogel[J]. Modern Silk Science & Technology, 2015, 30(5):161-164.
[20]YAMAURA K, OKUMURA Y, OZAKI A, et al. Flow-induced crystallization of bombyx mori silk fibroin from regenerated aqueous solution and spinnability of its solution[J]. Journal of Applied Polymer Science, 1985, 41:205-220.
[21]MATSUMOTO A, CHEN J S, COLLTETTE A L, et al. Mechanisms of silk fibroin sol-gel transitions[J]. Physical Chemistry B, 2006, 110(43):21630-21638.
[22]钱巧芬, 张珊珊, 侯静, 等. 乙二醇丝素蛋白共混膜的研究[J]. 丝绸, 2013, 50(9): 1-6.
QIAN Qiaofen, ZHANG Shanshan, HOU Jing, et al. Study on ethylene glycol/silk fibroin blend membrane [J]. Journal of Silk, 2013, 50(9): 1-6.
[23]CHEN X, KNIGHT D P, SHAO Z, et al. Regenerated bombyx silk solutions studied with rheometry and FTIR [J]. Polymer, 2001, 42(25): 9969-9974.
[24]ZHONG T, DENG C, GAO Y, et al. Studies of in situ-forming hydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution[J]. Journal of BiomedicalMaterials Research: Part A, 2012, 100(8): 1983-1989.
[25]SILVA S S, POPA E G, GOMES M E, et al. Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids[J]. Acta Biomaterialia, 2013, 9(11): 8972-8982.
[26]METZNER A B, OTTO R E. Agitation of non-Newtonian fluids[J]. AIChE Journal, 1957, 3(1): 3-10.
[27]MORN A K, REGEV O, KHAN A J. A cryo-TEM study of protein-surfactant gels and solutions[J]. Colloid Interface Science, 2000, 222(2): 170-178.
[28]KIELHORN L, COLBY R H, HAN C C. Relaxation behavior of polymer blends after the cessation of shear [J]. Macromolecules, 2000, 33(7): 2486-2496.
[29]HAN C C, YAO Y H, ZHANG R Y, et al. Effect of shear flow on multi-component polymer mixtures[J]. Polymer, 2006, 47(10): 3271-3286.
[30]WEISS P. Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organization[J]. Journal of Experimental Zoology, 1945, 100: 353-386.
[31]MOREN A K, NYDENY M, SODERMAN O , et al. Microstructure of protein-surfactant complexes in gel and solution an NMR relaxation study[J]. Langmuir, 1999, 15(17): 5480-5488.
[32]KIM U J, PARK J Y, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004, 5(3): 786-792.
[33]LIZUKA E. Mechanism of fiber formation by the silkworn, bombyx mori L[J]. Biorheology, 1966, 3(3): 141.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(51373114);江苏省高校自然科学研究重大资助项目(15KJA540001)
收稿日期:2016-11-19
修回日期:2017-00-00
作者简介:陈大旗(1988—),男,硕士研究生,研究方向为生物材料
通信作者:卢神州,教授,lushenzhou@suda.edu.cn
更新日期/Last Update: 2017-06-30