|本期目录/Table of Contents|

[1]姜茸凡,王云仪.服装衣下空气层热传递性能研究进展[J].丝绸,2018,55(7):071107.[doi:10.3969/j.issn.1001-7003.2018.07.007]
 JIANG Rongfan,WANG Yunyi.Research progress of heat transfer performance of air layer entrapped in clothing[J].Journal of Silk,2018,55(7):071107.[doi:10.3969/j.issn.1001-7003.2018.07.007]
点击复制

服装衣下空气层热传递性能研究进展(PDF)
分享到:

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
55
期数:
2018年7期
页码:
071107
栏目:
研究与技术
出版日期:
2018-07-20

文章信息/Info

Title:
Research progress of heat transfer performance of air layer entrapped in clothing
文章编号:
1001-7003(2018)07-0041-08
作者:
姜茸凡 王云仪
1.东华大学 a.服装与艺术设计学院; b.现代服装设计与技术教育部重点实验室,上海 200051; 2.西安工程大学 服装与艺术设计学院,西安 710048
Author(s):
JIANG Rongfan WANG Yunyi
1a. Fashion & Art Design Institute; 1b.Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China; 2. Apparel & Art Design College, Xi’an Polytechnic University, Xi’an 710048, China
关键词:
衣下空气层热传递性能三维人体测量法服装暖体假人
Keywords:
air layer entrapped in clothing heat transfer performance 3D body measuring clothing the thermal manikin
分类号:
TS941.17
doi:
10.3969/j.issn.1001-7003.2018.07.007
文献标志码:
A
摘要:
为探究衣下空气层对于服装系统热传递性能的影响,文章介绍了衣下空气层的热传递机制,概括了三种衣下空气层对于服装隔热性能影响的研究方法,即热平板测试、假人测试和数值模拟,论述了各研究方法的优点与不足。根据研究方法,从厚度、体积、位置、方向、非均匀形态和运动状态六方面分析了衣下空气层对服装热传递性能的影响。基于目前研究现状,针对研究方法和研究内容的不足提出两点展望,即研究非均匀衣下空气层对于服装系统热传递的影响,发展厚重服装和多层服装的衣下空气层的测量方法。
Abstract:
To explore the effect of air layer entrapped in clothing on heat transfer performance, the heat transfer mechanism of air layer was introduced in the study. The three kinds of research methods, their respective advantages and disadvantages were reviewed, including hot plate testing, manikin testing and numerical modeling. The advantages and disadvantages of research methods were discussed. According to the research methods, the influence of thickness, volume, location, direction, geometrical form and motion state on the clothing heat transfer performance was analyzed. Based on current research status, the two outlooks were proposed for the deficiency of research methods and research methods, i.e. to study the effect of non-heterogeneous air layer entrapped in clothing on heat transfer performance, and to develop measurement methods of air layer of thick clothing and multilayer clothing.

参考文献/References:

[1]张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010, 31(12): 103-107.
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer [J]. Journal of Textile Research, 2010, 31(12): 103-107.
[2]赖军, 张梦莹, 张华, 等. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(6): 151-156.
LAI Jun, ZHANG Mengying, ZHUANG Hua, et al. Research progress on air gap entrapped in firefighter’ protective clothing and its measurement methods [J]. Journal of Textile Research, 2017, 38(6): 151-156.
[3]HOLLANDS K, RAITHBY G D, KONICEK L. Correlation equations for free convection heat transfer in horizontal layers of air and water [J]. International Journal of Heat and Mass Transfer, 1975, 18(7): 879-884.
[4]MALKUS W V R. Discrete transitions in turbulent convection [J]. Proceeding of the Royal Society of London, 1954, 255 (1161): 185-195.
[5]YOSHIO Morozumi, KENICHI Akaki, NAOMASA Tanabe. Heat and moisture transfer in gaps between sweating imitation skin and nonwoven cloth: effect of gap space and alignment of skin and clothing on the moisture transfer [J]. Heat Mass Transfer, 2012(48): 1235-1245.
[6]葛新石, 叶宏. 传热和传质基本原理[M]. 6版. 北京: 化学工业出版社, 2007: 507-509.
GE Xinshi, YE Hong. Fundamentals of Heat and Mass Transfer [M]. 6th Edi. Beijing: Chemical Industry Press, 2007: 495-503.
[7]INGVAR Holmer. Thermal manikin history and applications [J]. European Journal of Applied Physiology, 2004, 92: 614-618.
[8]EMEL Mert, AGNES Psikuta1, BUENO Marie-Ange. The effect of body postures on the distribution of air gap thickness and contact area [J]. International Journal of Biometeorology, 2017(61): 363-375.
[9]史雯, 王发明. 我国少数民族服男装整体和局部衣下空气层分布[J]. 服装学报, 2016, 1(2): 161-169.
SHI Wen, WANG Faming. Study on the total and local clothing air gap of traditional Chinese male ethnic costumes [J]. Journal of Clothing Research, 2016, 1(2):161-169.
[10]JOANNA Frackiewicz-Kaczmarek, AGNES Psikuta, BUENO Marie-Ange. Effect of garment properties on air gap thickness and the contact area distribution [J]. Textile Research Journal, 2015, 85(18): 1907-1918.
[11]张昭华, 翟世瑾, 尹思源.衣下间隙对织物系统热湿阻的影响[J]. 纺织学报, 2016, 37(6):101-106.
ZHANG Zhaohua, ZHAI Shijin, YI Siyuan. Influence of air gaps on thermal and evaporative resistances of fabric system [J]. Journal of Textile Research, 2016, 37(6):101-106.
[12]HE Huang, YU Zhaicai. Effect of air gap entrapped in firefighter protective clothing on thermal resistance and evaporative resistance [J]. Autex Research Journal, 2017(6): 1-7.
[13]KIM Young, LEE Calvin, LI Peng, et al. Investigation of air gaps entrapped in protective clothing systems [J]. Fire and Materials, 2002(26): 121-126.
[14]LU Yehu, SONG Guowen. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning [J]. Applied Ergonomics, 2014, 45: 1439-1446.
[15]王云仪, 张雪, 李小辉, 等.基于Geomagic软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 102-106.
WANG Yunyi, ZHANG Xue, LI Xiaohui. et al. Geomagic-based characteristic extraction of air gap under clothing [J]. Journal of Textile Research, 2012, 33(11): 102-106.
[16]王敏, 李俊, 李小辉. 燃烧假人在火场热防护服装研究中的应用[J]. 纺织学报, 2013, 34(3): 154-160.
WANG Min, LI Jun, LI Xiaohui. Application of flame manikin in thermal protective clothing research [J]. Journal of Textile Research, 2013, 34(3): 154-160.
[17]WANG Min, LI Xiaohui, LI Jun. A new approach to quantify the thermal shrinkage of fire protective clothing after flash fire exposure [J]. Textile Research Journal, 2016, 86(6): 580-592.
[18]LEE Yejin, HONG Kyunghi, HONG Sung-Ae. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation [J]. Applied Ergonomics, 2007(38): 349-355.
[19]LI Jun, ZHANG Zhaohua, WANG Yunyi. The relationship between air gap sizes and clothing heat transfer performance [J]. The Journal of the Textile Institute, 2013, 104(12): 1327-1336.
[20]段杏元, 胡源盛. 男士针织内衣热性能的测量与分析[J]. 纺织学报, 2016, 37(12): 92-96.
DUAN Xingyuan, HU Yuansheng. Measurement and analysis on thermal properties of men’s knitted underwears [J]. Journal of Textile Research, 2016, 37(12): 92-96.
[21]CHEN Y S, FAN J, QIAN X. Effect of garment fit on thermal insulation and evaporative resistance [J]. Textile Research Journal, 2004, 74(8):742-748.
[22]MCQUERRY Meredith Laine. Clothing Modifications for Heat Strain Reduction in Structural Firefighter Protective Clothing Systems [D]. Raleigh: North Carolina State University, 2016.
[23]TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux [J]. Fire Technology, 1999, 35(3): 210-231.
[24]ZHU Fanglong, MA Suqin, ZHANG Weiyuan. Study of skin model and geometry effects on thermal performance of thermal protective fabrics [J]. Heat Mass Transfer, 2008(45): 99-105.
[25]GHAZY A, BERGSTROM D J. Influence of the air gap between protective clothing and skin on clothing performance during flash fire exposure [J]. Heat and Mass Transfer, 2011, 47(10): 1275-1288.
[26]KAMEL Ghali, NESREEN Ghaddar, B YRON Jones. Modeling of heat and moisture transport by periodic ventilation of thin cotton fibrous media [J]. International Journal of Heat and Mass Transfer, 2002, 45(18):3703-3714.
[27]SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics [J]. Textile Research Journal, 2009, 79(7): 632-644.
[28]TALUKDAR P, TORVI D A, SIMONSON C J, et al. Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests [J]. International Journal of Heat and Mass Transfer, 2010, 53(1): 526-539.
[29]MAYOR T S , COUTO S , PSIKUTA1 A , ROSSI R M, et al. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection [J]. International Journal of Biometeorology, 2015(59): 1875-1889.
[30]UDAYRAJ, PRABAL Talukdar, APURBA Das, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement [J]. International Journal of Heat and Mass Transfer, 2017(108): 271-291.
[31]张渭源. 服装舒适性与功能[M]. 北京: 中国纺织出版社, 2005: 58-59.
ZHANG Weiyuan. Clothing Comfort and Function [M]. Beijing: China Textile &Apparel Press, 2005: 58-59.
[32]LU Yehu, LI Jun, LI Xiaohui, et al. The effect of air gaps in moistprotective clothing on protection from heat and flame [J]. Journal of Fire Sciences, 2013, 31(2): 99-111.
[33]LI Jun, LU Yehu, LI Xiaohui. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires [J]. Textile Research Journal, 2012(82):1235-1243.
[34]张欢. 阻燃织物热湿舒适性及热防护性能研究[D]. 上海: 东华大学, 2016.
ZHANG Huan. The Study of Thermal Comfort and Thermal Protective Performance of Flame Retardant Fabrics [D]. Shanghai: Donghua University, 2016.
[35]HE Song, HUANG Dongmei, QI Zhengkun, et al. The effect of air gap thickness on heat transfer in firefighters’ protective clothing under conditions of short exposure to heat [J]. Heat transfer Research, 2012, 43(8):749-765.
[36]CROCKFORD G W, ROSENBLUM H A. The measurement of clothing microclimate volumes [J]. Clothing Research Journal, 1974, 2(3): 109-114.
[37]黄冬梅, 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报. 2015, 36(10): 113-119.
HUANG Dongmei, HE Song. Influence of air gap position on heat insulation performance of firefighters’ protective clothing [J]. Journal of Textile Research, 2015, 36(10): 113-119.
[38]WANG Yunyi, LU Yehu, LI Jun. et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance [J]. Fibers and Polymers, 2012, 13(5): 647-652.
[39]FU Ming, WENG Wenguo, YUAN Hongyong. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure [J]. Textile Research Journal, 2014, 84(9): 968-978.
[40]JL Spencer-Smith. The physical basis of clothing comfort, part 2: heat transfer through dry clothing assemblies [J]. Clothing Research Journal, 1977, 5: 3-17.
[41]SUN Chao, FAN Jintu. Comparison of clothing thermal comfort properties measured on female and male sweating manikins [J]. Textile Research Journal, 2016, 87(18):1-10.
[42]TANNIE Mah, SONG Guowen. Investigation of the contribution of garment design to thermal protection, part 2: instrumented female mannequin flash-fire evaluation system [J]. Textile Research Journal, 2010, 80(14): 1473-1487.
[43]EMEL Mert, AGNES Psikuta, BUENO. et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment [J]. International Journal of Biometeorology, 2015 (59): 1701-1710.
[44]CHOI Jiyoung, KIM Heejin, KANG Bora, et al. Analysis of clothing air gap in a protective suit according to the body postures [J]. Journal of Fiber Bioengineering & Informatics, 2014, 7(4): 573-581.
[45]LI Xiaohui, WANG Yunyi, LU Yehu. Effects of body postures on clothing air gap in protective clothing [J]. Journal of Fiber Bioengineering & Informatics, 2011, 4(3):277-283.
[46]KAMEL Ghali, NESREEN Ghaddar, BYRON Jones. Modeling of heat and moisture transport by periodic ventilation of thin cotton fibrous media [J].International Journal of Heat and Mass Transfer, 2002(45): 3703-3714.
[47]XIN Lisha, LI Xiaohui, LI Jun. A new approach to evaluate the effect of body motion on heat transfer of thermal protective clothing during flash fire exposure [J]. Fibers and Polymers, 2014, 15(10): 2225-2231.
[48]GHAZY Ahmed, DONALD J Bergstrom. Numerical simulation of the influence of fabric’s motion on protective clothing performance during flash fire exposure [J]. Heat Mass Transfer, 2013(49): 775-788.
[49]GHADDAR N, GHALI K, JREIJE B. Ventilation of wind-permeable clothed cylinder subject to periodic swinging motion modeling and experimentation [J]. Journal of Heat Transfer, 2008, 130: 1-11.

备注/Memo

备注/Memo:
收稿日期:2017-10-31
修回日期: 2018-00-00
作者简介:姜茸凡(1987—),男,博士研究生,研究方向为服装舒适性与功能设计
通信作者,王云仪,教授,wangyunyi@dhu.edu.cn
更新日期/Last Update: 2018-06-01