|本期目录/Table of Contents|

 Wang Xinru,Zou Shengzhi,Feng Wenqing,et al.Studies on Antheraeapernyisilk fibroin porous materials induced by ethanol[J].Journal of Silk,2018,55(10):101101.[doi:10.3969/j.issn.1001-7003.2018.10.001]





Studies on Antheraeapernyisilk fibroin porous materials induced by ethanol
1.东华大学纤维材料改性国家重点实验室,材料科学与工程学院,上海 201620;2.复旦大学附属华山医院 老年科,上海 200040
Wang Xinru Zou Shengzhi Feng Wenqing Zhang Yaopeng ZhangJiamin2ShaoHuili
 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; 2. Department of Geriatric Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
antheraeapernyi silk fibroin freeze-drying FTIR -sheet conformation gel
文章采用乙醇诱导再生柞蚕丝素蛋白(ASF)水溶液形成凝胶,并对该凝胶冷冻干燥制备出不溶于水的ASF多孔材料,利用傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)研究乙醇水溶液浓度、ASF初始浓度对ASF凝胶及其冻干后样品结构的影响,并采用激光扫描共聚焦显微镜(LSCM)对ASF多孔材料的生物相容性进行评价。FTIR结果表明,乙醇诱导ASF水溶液成胶伴随着大量β-折叠构象的形成。SEM结果显示,冻干后的ASF多孔材料孔径在14.2~30.4 μm。LSCM结果表明,该材料在生物医学领域具有潜在的应用价值。
Antheraeapernyi silk fibroin (ASF) gels were prepared from regenerated ASF aqueous solutions induced by ethanol , and freeze-dried to form insoluble ASF porous materials. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to investigate the effects of ethanol concentration and original ASF concentration on the structure of ASF gel and its freeze-dried samples. Moreover, laser scanning confocal microscope (LSCM) was used to further evaluate the biocompatibility of the obtained ASF porous materials. FTIR results showed that the gelation process of regenerated ASF aqueous solution induced by ethanol was accompanied by the formation of substantial β-sheet conformation. SEM results indicated that the pore size of the obtained ASF freeze-dried samples ranged from 14.2 to 30.4 ?m. LSCM results further showed that the ASF materials had great potential for biomedical application.


[1]陶伟. 再生柞蚕丝素多孔材料的制备及其结构[D]. 苏州: 苏州大学, 2005.
TAO Wei. Preparation and Structure of Regenerated Antheraea Pernyi Silk Fibroin Porous Materials [D]. Suzhou: Soochow University, 2005.
[2]李娟. 柞蚕丝素蛋白的自组装及其在药物缓释上的应用[D]. 上海: 东华大学, 2012.
LI Juan. Self-Assembly Behavior of Tussah Silk Fibroin and Application in Drug Controlled Release [D]. Shanghai: Donghua University, 2012
[3]赵春山, 李喜升. 柞蚕的经济与生态作用的再认识[J]. 辽宁农业科学, 2004(3): 28-29.
ZHAO Chunshan, LI Xisheng. Reconsideration of economic and ecological effect for the tussah[J]. Liaoning Agricultural Sciences, 2004(3): 28-29.
[4]MINOURA N, AIBA S, GOTOH Y, et al. Attachment and growth of fibroblast cells on silk fibroin [J]. Biochemical Biophysical Research Communications, 1995, 208(2): 511-516.
[5]莫春丽. 傅立叶变化红外光谱对再生丝蛋白二级结构的表征[D]. 上海: 复旦大学,2009.
MO Chunli. Fourier Infrared Spectroscopy Characterization on the Secondary Structure of Silk Fibroin [D]. Shanghai: Fudan University, 2009.
[6]YANG Y H, SHAO Z Z, CHEN X. Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution [J]. Biomacromolecules, 2004, 5(3): 773-779.
[7]成蓥栋. 再生家蚕丝素蛋白结构转变的研究[D]. 苏州: 苏州大学,2008.
CHEN Yingdong. Research on the Structural Transformation of Regenerated Bombyx mori Silk Fibroin [D]. Suzhou: Soochow University, 2008.
[8]卢雁, 张玮玮, 王公轲. FTIR用于变性蛋白质二级结构的研究进展[J]. 光谱学与光谱分析,2008, 28(1): 88-93.
LU Yan, ZHANG Weiwei, WANG Gongke. Progress in study of secondary structure of denaturized protein by FTIR [J]. Spectroscopy and Spectral Analysis, 2008, 28(1): 88-93.
[9]WU X, WU X D, SHAO M. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods [J]. International Journal of Biological Macromolecules, 2017, 102: 1202-1210.
[10]VAN de Weert M, HARIS P I, HENNINK W E, et al. Fourier transform infrared spectrometric analysis of protein conformation: Effect of sampling method and stress factors [J]. Analytical Biochemistry, 2001, 297(2): 160-169.
[11]刘明. FTIR对丝素蛋白构象的研究[D]. 杭州: 浙江大学,2006.
LIU Ming. Studies on the Conformation of Silk Fibroin by FTIR [D]. Hangzhou: Zhejiang University, 2006.
[12]刘强强. 周围神经修复用搭载双因子静电纺有序丝素蛋白支架的研究[D]. 上海: 东华大学,2016.
LIU Qiangqiang. Silk Fibroin Scaffolds with Well-Aligned Fibers Loaded with Dual Factors for Peripheral Nerve Repair [D]. Shanghai: Donghua University, 2016.
[13]杭怡春. 再生丝素/丝胶蛋白水溶液的经典纺丝和干法纺丝研究[D]. 上海: 东华大学,2012.
HANG Yichun. Studies on the Electrospinning and Dry Spinning of the Regenerated Silk Fibroin/Sericin Aqueous Solutions [D]. Shanghai: Donghua University, 2012.
[14]HARDY J G, ROEMER L M, SCHEIBEL T R. Polymeric materials based on silk proteins [J]. Polymer. 2008, 49(20): 4309-4327.
[15]HU X, KAPLAN D, CEBE P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy [J]. Macromolecules. 2006, 39: 6161-6170.
[16]ZHANG C, ZHANG Y P, SHAO H L, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions [J]. ACS Applied Materials &Interfaces. 2016, 8(5): 3349–3358.
[17]PAQUEt M F, LEFEVRE T, AUGER M, et al. Evidence by infrared spectroscopy of the presence of two types of beta-sheets in major ampullate spider silk and silkworm silk [J]. Soft Matter, 2013, 9(1): 208-215.
[18]MENG G T, MA C Y. Fourier-transform infrared spectroscopic study of globulin from phaseolus angularis (red bean) [J]. International Journal of Biological Macromolecules, 2001(29): 287–294.
[19]CORMIER A R, RUIZ O C, Alamo R G, et al. Solid State Self-Assembly Mechanism of RADA16-I Designer Peptide [J]. Biomacromolecules, 2012, 13(6): 1794-1804.
[20]刘明, 闵思佳, 朱良均. 冷冻干燥对丝素蛋白凝胶结构的影响[J]. 蚕业科学,2007, 33(2): 246-249.
LIU Ming, MIN Sijia, ZHU Liangjun. Effect of freeze-dry on the structure of silk fibroin gel [J]. Science of Sericulture, 2007, 33(2): 246-249.
[21]DONG A, PRESTRELKI S J, ALLISON S D, et al. Infrared spectroscopic studies of lyophilization-and temperature-induced protein aggregation [J]. Journal of Pharmaceutical Sciences, 1995, 84(4): 415-424.
[22]LUCIMARA A F, RUBENS B F, LUIZ A C. Protein structure in KBr pellets by infrared spectroscopy [J]. Analytical Biochemistry, 1998, 259(1): 136 -141.
[23]金媛. 蚕丝的仿生纺丝研究[D]. 上海: 东华大学,2013.
JIN Yuan. Studies on Biomimetic Spinning of Silkworm Silk [D]. Shanghai: Donghua University, 2013.
[24]杨宇红. 再生Bombyx mori丝素蛋白在水溶液中结构和性质的研究[D]. 上海: 复旦大学, 2004.
YANG Yuhong. Inverstigation on Structures and Properties of Regenerated Bombyx mori Silk Fibroin in Aqueous Solution [D]. Shanghai: Fudan University,2004.
[25]余晶梅. 荧光探针法和疏水相互作用层析法分析蛋白表面疏水性[D]. 杭州: 浙江大学,2014.
YU Jingmei. Measurement of Protein Surface Hydrophobicity by Fluorescence Probe Method and Hydrophobic Interaction Chromatography [D]. Hangzhou: Zhejiang University,2014.
[26]丁珊, 李立华. 新型组织工程支架材料[J]. 生物医学工程学杂志. 2002, 19(1): 122~126.
DING Shan, LI Lihua. Novel scaffold materials for tissue engineering [J]. Journal of Biomedical Engineering. 2002, 19(1): 122~126.
[27] 张润, 邓政兴, 李立华, 等. 用超临界CO2法制备聚乳酸三维多孔支架材料[J]. 材料研究学报,2003, 17(6): 665-672.
ZHANG Run, DENG Zhengxing, LI Lihua, et al. Preparation of porous PLA scaffold materials by supercritical CO2 fluid technique [J]. Chinese Journal of Materials Research, 2003, 17(6): 665-672.
[28]刘倩倩, 唐川, 杜哲, 等. 超临界CO2发泡法制备PLGA 多孔组织工程支架[J]. 高分子学报,2013(2): 174-182.
LIU Qingqing, TANG Chuan, Du Zhe.et al. Fabrication of porous poly (lacticacid-co-glycolic acid) scaffolds using supercritical carbon dioxide [J]. Acta Polymerica Sinica. 2013(2): 174-182.
[29]Chang B S, Lee C K, Hong K S. Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials. 2000, 21(12): 1291~1298.


更新日期/Last Update: 2018-09-13