|本期目录/Table of Contents|

[1]张亚芳,徐伯俊,刘新金,等.废旧纤维素纤维再利用方法优化[J].丝绸,2018,55(11):111107.[doi:10.3969/j.issn.1001-7003.2018.11.007]
 ZHANG Yafang,XU Bojun,LIU Xinjin,et al.Optimization of methods to recycle waste cellulosic fiber[J].Journal of Silk,2018,55(11):111107.[doi:10.3969/j.issn.1001-7003.2018.11.007]
点击复制

废旧纤维素纤维再利用方法优化(PDF)
分享到:

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
55
期数:
2018年11期
页码:
111107
栏目:
研究与技术
出版日期:
2018-11-20

文章信息/Info

Title:
Optimization of methods to recycle waste cellulosic fiber
文章编号:
1001-7003(2018)11-0041-07
作者:
张亚芳徐伯俊刘新金苏旭中张 涵
1.江南大学 生态纺织教育部重点实验室,江苏 无锡214122; 2.湖北省纺织新材料与先进加工技术省部共建国家重点实验室培育基地,武汉 430000
Author(s):
ZHANG Yafang XU Bojun LIU Xinjin SU Xuzhong ZHANG Han
1.Key?Laboratory?of?Eco-Textiles,Ministry?of?Education,?Jiangnan?University,?Wuxi 214122, China2.StateKey?LaboratorytrainingGround?ofTextileNewMaterials?andProcessing?in?Hubei,?Wuhan?430000, China
关键词:
纺织品回收利用纤维二糖密度泛函理论亚临界水水解总反应热
Keywords:
textile recycling cellobiose density functional theory subcritical water hydrolysis total reaction heat
分类号:
TS109;TQ127.1+1
doi:
10.3969/j.issn.1001-7003.2018.11.007
文献标志码:
A
摘要:
纤维素纺织品使用周期缩短,需要对废旧纤维素纺织品回收利用来节约资源、保护环境,亚临界水解法水解纤维素总反应热低。本次在Materials Studio 5.5下的DMol3中,用密度泛函方法系统对比了真空气氛和亚临界水环境下纤维二糖稳定构型中主要原子构型的差异;探讨整个水解过程中主要化学键的键角、键长的变化情况和每一步的反应热。发现亚临界水环境下纤维二糖分子的水解机理,即经过质子化、单元环的异构化、糖苷键的断裂、水分子与异头碳原子作用以及去质子化,最终生成2个单糖。得到整个水解过程的总反应热仅为-1.945 kcal/mol,符合实验值≤3.0 kcal/mol,能量明显降低,其中控速步骤为单元环折叠而发生异构化,其能垒为2.611 kcal/mol。
Abstract:
The use cycle of cellulose textiles is shortened, and it is necessary to recycle the waste cellulose textiles to save resources and protect the environment. The total reaction heat for cellulose hydrolysis by subcritical hydrolysis is low. In the DMol3 under Materials Studio 5.5, the differences of the main atom configuration in the stable cellobiose configuration under vacuum atmosphere and subcritical water environment were compared by using the density functional method. The changes of main chemical bonds in bond angle and key length as well as the reaction heat in each step of the entire hydrolysis process were discussed. The hydrolysis mechanism of cellobiose molecules in subcritical water environment was discovered, i .e. protonation, isomerization of unit loops, fracture of glycosidic bonds, interaction of water molecules and anomeric carbon atoms, and deprotonation result ed in the formation of two monosaccharides. The total reaction heat of the whole hydrolysis process was only -1.945 kcal/mol, which conform ed to the experimental value of ≤3.0 kcal/mol, and the energy was obviously reduced. The rate control step was the isomerization of the ring folding and its energy barrier was 2.611 kcal/ mol.

参考文献/References:

[1] 史晟. 亚临界水中废旧涤棉织物的水解碳化机理研究[D]. 太原: 太原理工大学, 2016.
SHI Sheng. Study on the Mechanism of Hydrolysis and Carbonization of Waste Polyester Fabric in Subcritical Water [D]. Taiyuan: Taiyuan University of Technology, 2016.
[2] YOKOGAWA D, NISHIMURA Y, IRLE S. Theoretical study of cellobiose hydrolysis to glucose in ionic liquids [J]. Chemical Physics Letters, 2014, 603: 7-12.
[3] LOERBROKS C, RINALDI R, THIEL W. The electronic nature of the 1, 4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry [J]. Chemistry-A European Journal, 2013, 19(48): 16282-16294.
[4] ANDREWS C W, FRASER-REID B, BOWEN J P. An ab initio study (6-31G*) of transition states in glycoside hydrolysis based on axial and equatorial 2-methoxytetrahydropyrans [J]. Journal of the American Chemical Society, 1991, 113(22): 8293-8298.
[5] ANDREWS C W, BOWEN J P, FRASER-REID B. An ab initio study of dimethoxymethane protonation and its relevance to glycoside hydrolysis [J]. Journal of the Chemical Society, Chemical Communications, 1989(24): 1913-1916.
[6] LI C, ZHAO Z K. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid [J]. Advanced Synthesis & Catalysis, 2007, 349(11/12): 1847-1850.
[7] LI C, WANG Q, ZHAO Z K. Acid in ionic liquid: An efficient system for hydrolysis of lingo cellulose [J]. Green Chemistry, 2008, 10(2): 177-182.
[8] RINALDI R, PALKOVITS R, SCH?TH F. Depolymerization of cellulose using solid catalysts in ionic liquids [J]. Angewandte Chemie International Edition, 2008, 47(42): 8047-8050.
[9] DESLONGCHAMPS P, LI S, DORY Y L. Hydrolysis of α- and β-Glycosides new experimental data and modeling of reaction pathways [J]. Organic Letters, 2004, 6(4): 505-508.
[10]SMITH B J. Effect of ring distortion on the acid hydrolysis of 2-methylsulfanyloxane [J]. The Journal of Physical Chemistry A, 1998, 102(24): 4728-4733.
[11] SMITH B J. A conformational study of 2-oxanol: Insight into the role of ring distortion on enzyme-catalyzed glycosidic bond cleavage [J]. Journal of the American Chemical Society, 1997, 119(11): 2699-2706.
[12]MOMANY F A, SCHNUPF U. DFTMD studies of β-cellobiose: conformational preference using implicit solvent [J]. Carbohydrate Research, 2011, 346(5): 619-630.
[13]LIU D, NIMLOS M R, JOHNSON D K, et al. Free energy landscape for glucose condensation reactions [J]. The Journal of Physical Chemistry A, 2010, 114(49): 12936-12944.
[14] SATOH H, HANSEN H S, MANABE S, et al. Theoretical investigation of solvent effects on glycosylation reactions:stereoselectivity controlled by preferential conformations of the intermediate oxacarbenium-counterion complex [J]. Journal of Chemical Theory and Computation, 2010, 6(6): 1783-1797.
[15] DONG H, NIMLOS M R, HIMMEL M E, et al. The effects of water on β-d-xylose condensation reactions [J]. The Journal of Physical Chemistry A, 2009, 113(30): 8577-8585.
[16] LIANG X, MONTOYA A, HAYNES B S. Local site selectivity and conformational structures in the glycosidic bond scission of cellobiose [J]. The Journal of Physical Chemistry B, 2011, 115(36): 10682-10691.
[17] BECK J M, MILLER S M, PECZUH M W, ect al. C2 hydroxyl group governs the difference in hydrolysis rates of methyl-α-d-glycero-d-guloseptanoside and methyl-β-d-glycero-d-guloseptanoside [J]. The Journal of Organic Chemistry, 2012, 77(9): 4242-4251.

备注/Memo

备注/Memo:
收稿日期:2018-01-23
修回日期:2018-00-00
基金项目:江苏省自然科学基金项目(BK20170169);宿迁市科技支撑项目(H201607,H201602);江苏省产学研项目(BY2016022-27);江苏省先进纺织工程技术中心基金项目(XJFZ/2016/4);纺织服装产业河南省协同创新项目(hnfx14002);中央高校基本科研业务费专项资金资助项目(JUSRP51731B);新疆维吾尔族自治区重点研发专项(2017B02011);武汉纺织大学开放课题项目(ZDSYS201701,GCSYS201701);江苏省产学研项目(BY2016022-16)
作者简介:张亚芳(1991—),女,硕士研究生,研究方向为纤维素纺织品回收利用
通信作者:徐伯俊,教授,wxxbj@sina.com
更新日期/Last Update: 2018-10-15