|本期目录/Table of Contents|

[1]查刘根,谢春萍.基于免疫遗传算法的BP神经网络在纱线条干预测上的应用[J].丝绸,2019,56(2):021104.[doi:10.3969/j.issn.1001-7003.2019.02.004]
 ZHA Liugen,XIE Chunping.Application of BP Neural Network in Yarn Evenness Prediction Based on Immune Genetic Algorithm[J].Journal of Silk,2019,56(2):021104.[doi:10.3969/j.issn.1001-7003.2019.02.004]
点击复制

基于免疫遗传算法的BP神经网络在纱线条干预测上的应用(PDF)
分享到:

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
56
期数:
2019年2期
页码:
021104
栏目:
研究与技术
出版日期:
2019-02-20

文章信息/Info

Title:
Application of BP Neural Network in Yarn Evenness Prediction Based on Immune Genetic Algorithm
文章编号:
1001-7003(2019)02-0019-08
作者:
查刘根谢春萍
江南大学 纺纱重点实验室,江苏 无锡 214122
Author(s):
ZHA Liugen XIE Chunping
Key Laboratory of Spinning, Jiangnan University, Wuxi, Jiangsu, 214122, China
关键词:
纱线条干纱线质量预测BP神经网络免疫算法遗传算法
Keywords:
yarn evenness yarn quality prediction BP neural network immune algorithm genetic algorithm
分类号:
TS111.914
doi:
10.3969/j.issn.1001-7003.2019.02.004
文献标志码:
A
摘要:
为了避免因随机生成BP神经网络初始权值和阈值而带来的不确定性,以及得到更好的预测纱线条干CV值的精度和速度,借助免疫遗传算法对传统单一的BP神经网络进行权值和阈值的优化。免疫算法中特有的浓度调节机制有效地解决了遗传算法后期未成熟收敛的问题。利用Matlab构建单一的BP神经网络模型、遗传BP神经网络模型和免疫遗传BP神经网络模型进行纱线条干CV值的预测实验,通过仿真训练结果的对比分析可得出,免疫遗传算法优化的BP神经网络能够更准确、更快速、更稳定地完成纱线条干CV值的预测。
Abstract:
In order to avoid uncertainty caused by randomly generating initial weights and threshold values of BP neural network, and obtain higher prediction accuracy and speed of yarn evenness CV value, weights and threshold values of traditional single BP neural network were optimized with the aid of immune genetic algorithm. The unique concentration adjustment mechanism of immune algorithm effectively works in solving the problem of premature convergence in later period of genetic algorithm. Matlab was applied to construct a single BP neural network model, genetic BP neural network model and immune genetic BP neural network model to predict yarn evenness CV value . Comparative analysis of simulation training results indicate that the BP neural network developed via optimization with immune genetic algorithm performs more accurately, quickly and stably in predicting yarn evenness CV value.

参考文献/References:

[1]谷有众, 高卫东, 卢雨正, 等. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016,37(7): 9-13.
GU Youzhong, GAO Weidong, LU Yuzheng, et al. Prediction of vortex yarn properties based on hybrid genetic algorithm and support vector regression[J]. Journal of Textiles Research, 2016 ,37(7): 9-13.
[2]谷有众, 刘建立, 高卫东. 基于遗传模拟退火神经网络的纱线强力预测[J]. 上海纺织科技, 2016,44(1): 21-25.
GU Youzhong, LIU Jianli, GAO Weidong. Prediction of yarn strength based on genetic simulated annealing BP neural network [J]. Shanghai Textile Science and Technology, 2016,44(1): 21-25.
[3]张立仿, 张喜平. 量子遗传算法优化BP神经网络的网络流量预测[J]. 计算机工程与科学, 2016,38(1): 7-11.
ZHANG Lifang, ZHANG Xiping. Network traffic prediction based on BP neural networks optimized by quantum genetic algorithm [J]. Computer Engineering and Science , 2016,38(1): 7-11.
[4]熊经纬, 杨建国, 徐兰. 基于PSO-BP神经网络的纱线质量预测[J]. 东华大学学报(自然科学版), 2015,41(4): 43-47.
XIONG Jingwei, YANG Jianguo, XU Lan. Combining the particle swarm optimization with BP neural network for yarn quality forecasting [J]. Journal of Donghua University (Natural Science) , 2015,41(4): 43-47.
[5]YANG Jianguo, XU Lan, LU Zhijun, et al . Yarn quality prediction and process parameters optimization based on genetic algorithm and neural network [J]. Applied Mechanics and Materials, 2015 (742): 112-118.
[6]徐立云, 刘伟, 楼科文, 等. 基于改进免疫遗传算法的加工工艺重构[J]. 同济大学学报(自然科学版). 2016,44(6): 35-39.
XU Liyun, LIU Wei, LOU Kewen, et al. Reconfigurable process planning based on improved immune genetic algorithm [J]. Journal of Tongji University (Natural Science) , 2016,44(6): 35-39.
[7]EUGENE YC Wong, HENRY SC Yeung, HENRY YK Lau. Immunity-based hybrid evolutionary algorithm for multi-objective optimization in global container repositioning [J]. Engineering Applications of Artificial Intelligence, 2008,22(6): 842-854.
[8]韩莉, 张振宇, 刘倩, 等. 基于免疫遗传算法-BP神经网络的主汽温控制[J]. 化工自动化及仪表, 2011(3): 67-71.
HAN Li, ZHANG Zhenyu, LIU Qian, et al. Main steam temperature control based on immune genetic algorithm and BP neural network [J]. Control and Instruments in Chemical Industry, 2011(3): 67-71.
[9]纪雪, 周兴华, 陈义兰, 等. 基于BP神经网络的海底地形复杂度自动分类方法研究[J]. 海岸工程, 2016,35(4): 15-20.
JI Xue, ZHOU Xinghua, CHEN Yilan, et al. Study on automatic classification method for seafloor terrain complexity based on BP neural network [J]. Coastal Engineering, 2016,35(4): 15-20.
[10]高兴培. 免疫遗传算法在BP网络结构优化中的应用[J]. 广东广播电视大学学报, 2005,14(1): 21-26.
GAO Xingpei. Application of immune genetic algorithm in structural optimization on BP network [J]. Journal of Guangdong Radio & TV University, 2005,14(1): 21-26.
[11]史步海, 朱学峰. LMBP神经网络改进算法的研究[J]. 控制工程, 2006, 13(6): 525-529.
SHI Buhai, ZHU Xuefeng. Research on improved algorithm of LMBP neural net work [J]. Control Engineering Practice, 2006, 13(6): 525-529.
[12]罗菲, 何明一. 基于免疫遗传算法的多层前向神经网络设计[J]. 计算机应用, 2005,25(7): 1661-1665.
LUO Fei, HE Mingyi. Multilayer feed-forward neural networks based on immune genetic algorithm [J]. Computer Applications, 2005,25(7): 1661-1665.
[13]杨孔雨, 王秀峰. 免疫记忆遗传算法及其完全收敛性研究[J]. 计算机工程与应用, 2005 (12): 47-50.
YANG Kongyu, WANG Xiufeng. Research of immune memory genetic algorithm and its complete convergence [J]. Computer Engineering and Applications, 2005 (12): 47-50.
[14]宫新保, 臧小刚, 周希朗. 基于免疫算法的前向神经网络学习方法[J]. 系统工程与电子技术, 2004, 26(12): 1927-1929.

备注/Memo

备注/Memo:
收稿日期:2018-05-17
修回日期:2018-00-00
基金项目:国家重点研发计划项目(2017YFB0309200);江苏省产学研项目(BY2016022-16);江苏省自然科学基金项目(BK20170169);纺织服装产业河南省协同创新项目(hnfx14002);中央高校基本科研业务费专项资金资助项目(JUSRP51731B)
作者简介:查刘根(1992—),男,硕士研究生,研究方向为计算机配棉
通信作者:谢春萍,教授,wxxchp@vip.163.com
更新日期/Last Update: 2018-12-29