|本期目录/Table of Contents|

[1]王 欢,马崇启,吕汉明.等离子体处理对UHMWPE纤维性能的影响[J].丝绸,2019,56(1):191104.[doi:10.3969/j.issn.1001-7003.2019.01.004]
 WANG Huan,MA Chongqi,L? Hanming.Effect of plasma modification treatment on UHMWPE fiber properties[J].Journal of Silk,2019,56(1):191104.[doi:10.3969/j.issn.1001-7003.2019.01.004]
点击复制

等离子体处理对UHMWPE纤维性能的影响(PDF)
分享到:

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
56
期数:
2019年1期
页码:
191104
栏目:
研究与技术
出版日期:
2019-01-20

文章信息/Info

Title:
Effect of plasma modification treatment on UHMWPE fiber properties
文章编号:
1001-7003(2019)01-0021-07
作者:
王 欢马崇启吕汉明
天津工业大学 纺织学院,天津 300387
Author(s):
WANG Huan MA Chongqi L? Hanming
Textile Institute, Tianjin Polytechnic University, Tianjin 300387, China
关键词:
等离子体处理法UHMWPE纤维力学性能正交实验黏结力 纤维束抽拔法
Keywords:
plasma treatment UHMWPE fiber mechanical properties orthogonal experiment adhesive force fiber bundle pull-out method
分类号:
TS102.6;TQ342.92
doi:
10.3969/j.issn.1001-7003.2019.01.004
文献标志码:
A
摘要:
针对超高分子量聚乙烯纤维(UHMWPE)因纤维表面光滑,造成纤维与树脂基体间的界面黏结度低的缺点,采用等离子处理方法对UHMWPE纤维的表面进行改性。利用台式扫描电镜、红外光谱等探究改性前后UHMWPE纤维的性能,采用正交实验设计方法分析等离子处理纤维过程中影响纤维性能的因素,再利用纤维束抽拔法测试纤维束与树脂之间的黏结力。结果表明:采用等离子处理方法最佳处理时间为4 min、舱内的压强为5 Pa、处理的功率为110 W;改性处理后,纤维表面的活性基团明显增多;改性后纤维表面明显有刻蚀作用,纤维表面接触角下降28.95%,纤维与树脂基体的黏结度提高约28.35%。
Abstract:
The smooth surface of UHMWPE fiber results in the low interfacial adhesion between the fibers and resin matrix. For this disadvantage, plasma processing method was used for surface modification of UHMWPE fibers. The properties of UHMWPE fiber before and after the modification were investigated by SEM and infrared spectroscopy. The factors affecting the fiber properties during plasma treatment were analyzed by orthogonal experiment design method. Then, the adhesive force between the fiber bundle and the resin was measured by the fiber bundle pull-out method. The results showed that: the optimum treatment process is as below: treatment time 4 min, pressure 5Pa. the power of treatment 110W. After modification, the active groups on the fibers surface increased significantly; the surface roughness increased obviously; the contact angle of fiber surface decreased by 28.95%, and the adhesive force between fiber and resin matrix increased by about 28.35%.

参考文献/References:

[1]张艳. 超高分子量聚乙烯纤维在防弹和防刺材料方面的应用[J]. 产业用纺织品, 2010, 28(10): 32-39.
ZHANG Yan. The application of ultra high molecular weight polyethylene fiber on bulletproof and stab-resistant materials [J]. Technical Textiles, 2010, 28(10): 32-39.
[2]尹晔东. 超高分子量聚乙烯纤维的发展状况[J]. 化工新型材料, 2008, 36(10): 51-53.
YIN Yedong. Recent progress in ultra high molecular weight polyethylene fibers [J]. New Chemical Materials, 2008, 36(10): 51-53.
[3]田孟琪, 杨建忠. 等离子体处理超高相对分子质量聚乙烯纤维[J]. 合成纤维, 2013, 42(4): 16-19.
TIAN Mengqi, YANG Jianzhong. Study on ultra-high molecular weight polyethylene fiber treated by plasma [J]. Synthetic Fiber in China, 2013, 42(4): 16-19.
[4]WANG J, LIANG G, WEN Z, et al. Studies on surface modification of UHMWPE fibers via UV initiated grafting [J]. Applied Surface Science, 2006, 253(2): 668-673.
[5]SMITH P, LEMSTRA P J. Ultra-high-strength polyethylene filaments by solution spinning/drawing [J]. Journal of Mterials Science, 1980, 15(2): 505-514.
[6]LIU Ying. Characteristic and application progress of UHMWPE [J]. World Plastics, 2005(11): 36-40.
[7]WANG Yanping, CHENG Ruiling, LIANG Linli, et al. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber [J]. Composites Science & Technology, 2005, 65(5): 793-797.
[8]LUO Yifeng. General situation of world’s ultra high molecular weight polyethylene fiber and some suggestions [J]. Hi-Tech Fiber & Application, 1999(5): 13-19.
[9]YIN Dehui, LI Binghai, XU Shuzhen, et al. Development and application of UHMWPE [J]. Plastics, 1999, 41(6): 9-12.
[10]XU Haojun, AN Minfang, WANG Zongbao, et al. Characterization of structural knot distributions in UHMWPE fibers [J]. Polymer Science (English), 2016, 34(5): 606-615.
[11]任元林, 程博闻. 超高相对分子质量聚乙烯纤维的改性及其应用[J]. 高科技纤维与应用, 2005, 30(5): 34-40.
REN Yuanlin, CHENG Bowen. Modification and application of ultra-high molecular weight polyethylene fiber [J]. Hi-Tech Fiber & Application, 2005, 30(5): 34-40.
[12]王皓, 候志辉, 李炜, 等. UHMWPE树脂及其纤维应用现状和发展前景[J]. 高科技纤维与应用, 2015,40(1): 19-28.
WANG Hao, HOU Zhihui, LI Wei, et al. The application and trend of UHMWPE resin and its fiber [J]. Hi-Tech Fiber & Application, 2015,40(1): 19-28.
[13]栾秀娜, 于俊荣, 刘兆峰. 超高相对分子质量聚乙烯纤维及其应用[J]. 高科技纤维与应用, 2003, 28(3): 23-27.
LUAN Xiuna, YU Junrong, LIU Zhaofeng. Ultra-high molecular weight polyethylene fiber and its application [J]. Hi-Tech Fiber & Application, 2003, 28(3): 23-27.
[14]李瑞培, 李微微, 孟立, 等. 超高分子量聚乙烯纤维的液相氧化改性及其环氧树脂基复合材料的力学和摩擦性能[J]. 材料导报, 2016, 30(4): 41-46.
LI Ruipei, LI Weiwei, MENG Li, et al. Liquid-phase oxidation modification of ultra-high molecular weight polyethylene fiber and mechanical/tribological properties of the corresponding fiber-reinforced epoxy resin composites [J]. Materials Rview, 2016, 30(4): 41-46.
[15]任煜, 张银, 王晓娜, 等. 空气介质阻挡放电对超高分子量聚乙烯纤维表面性能及黏结力的影响研究[J]. 高分子学报, 2016(10): 1439-1446.
REN Yu, ZHANG?Yin, WANG Xiaona, et al. Surface properties and adhesion force of air dielectric barrier discharge treated UHMWPE fibers [J]. Acta Polymerica Sinica, 2016(10): 1439-1446.
[16]金军, 张慧萍, 晏雄. 超高分子量聚乙烯纤维的表面改性研究[J]. 产业用纺织品, 2010, 28(2):36-40.
JIN Jun, ZHANG Huiping, YAN Xiong. Study on surface-treatment of UHMWPE fiber [J]. Technical Textiles, 2010, 28(2):36-40.
[17]SAKURAI K, KONDO Y, MIYAZAKI K, et al. Ultrahigh‐molecular‐weight‐polyethylene‐fiber surface treatment by electron‐beam‐irradiation‐induced graft polymerization and its effect on adhesion in a styrene–butadiene rubber matrix [J]. Journal of Polymer Science Part B Polymer Physics, 2004, 42(42): 2595-2603.
[18]NETRAVALI A N, CACERES J M, THOMPSON M O, et al. Surface modification of ultra-high strength polyethylene fibers for enhanced adhesion to epoxy resins using intense pulsed high-power ion beam [J]. Journal of Adhesion Science & Technology, 1999, 13(11):1331-1342.
[19]ALINA Kaminnska,HALINA Kaczmarek, JOLANTA Kowalone. The influ-nce of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action [J]. European Polymer Journal, 2002(38): 1915-1 919.
[20]刘晓巧, 孟家光, 田萌. 超高相对分子质量聚乙烯纤维的低温等离子体处理[J]. 合成纤维, 2015, 44(10): 25-29.
LIU Xiaoqiao, MENG Jiaguang, TIAN Meng. Low temperature plasma treatment of ultrahigh molecular weight polethylene fiber [J]. Synthetic Fiber in China, 2015, 44(10): 25-29.
[21]洪剑寒, 潘志娟. 氧气等离子体处理对超高分子量聚乙烯纤维力学性能的影响[J]. 产业用纺织品, 2013, 31(2): 29-32.
HONG Jianhan, PAN Zhijuan. Mechanical property of UHMWPE fiber treated by oxygen plasma [J]. Technical Textiles, 2013, 31(2): 29-32.
[22]HUANG Chiyuan, WU Jinhyi, TSAI Chinshan, et al. Effects of argon plasma treatment on the adhesion property of ultra high moleclar weight polyethylene (UHMWPE) textile [J]. Surface & Coatings Technology, 2013, 231(9): 507-511.
[23]LIU Hengjun, PEI Yanan, XIE Dong, et al. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma [J]. Applied Surface Science, 2010, 256(12): 3941-3945.
[24]曹涛. 铬酸处理超高分子量聚乙烯纤维性能分析[J]. 山东纺织科技, 2014, 55(2): 53-56.
CAO Tao. Research on adhesion of UHMWPE fiber treated by chromic acid[J]. Shandong Textile Science & Technology, 2014, 55(2): 53-56.
[25]宋俊, 肖长发, 李娜娜, 等. 铬酸处理的超高分子量聚乙烯纤维粘接性研究[J]. 玻璃钢/复合材料, 2007(2): 29-32.
SONG Jun, XIAO Changfa, LI Nana, et al. Study on adhesion of UHMWPE fiber treated by chromic acid [J]. Fiber Reinforced Plastics/Composites, 2007(2):29-32.
[26]PANIN S V, KORNIENKO L A, PIRIYAON S, et al. Antifrictional nanocomposites based on chemically modified UHMWPE. (Part 3): Comparison of modification effect of compatibilizers on mechanical and tribotechnical properties [J]. Journal of Friction & Wear, 2012, 33(1):47-52.
[27]WANG Lei, GAO Shangbing, WANG Junjun, et al. Surface modification of uhmwpe fibers by ozone treatment and uv grafting for adhesion improvement [J]. Journal of Adhesion, 2016, 94(1): 30-45.
[28]杨宇平.超高分子量聚乙烯纤维电子束辐照改性研究[D]. 天津: 天津工业大学, 2004:2.
YANG Yuping. Study on Electron Beam Irradiation Modification of UHMWPE Fibers [D]. Tianjin: Tianjin Polytechnic Unversity, 2004:2.
[29]骆玉祥,胡福增,郑安呐,等. 超高分子量聚乙烯纤维表面处理[J]. 玻璃钢/复合材料,1998(5): 9-13.
LUO Yuxiang, HU Fuzeng, ZHENG Anna, et al. Surface treatment of ultra-high molecular pe fiber [J]. Fiber Reinforced Plastics/Composites, 1998(5): 9-13.
[30]田孟琪, 杨建忠. 空气冷等离子体处理对UHMWPE纤维性能与结构的影响[J]. 高科技纤维与应用, 2013(4): 34-37.
TIAN Mengqi, YANG Jianzhong. Cold air plasma treatment on properties and structure of UHMWPE fibers [J]. High-Tech Fiber And Applications,2013(4): 34-37.
[31]邓芹英, 刘岚, 邓慧敏. 波谱分析教程[M]. 2版. 北京: 科学出版社, 2007.
DENG Qinying, LIU Lan, DENG Huimin.Wave-Spectrum Analysis Tutorial [M]. 2nd Edi. Beijing: Science Press, 2007.
[32]岳震南, 黄英, 王岩, 等. 低温等离子体对PBO纤维表面改性的研究[J]. 玻璃钢/复合材料, 2011(1): 16-19.

备注/Memo

备注/Memo:
收稿日期:2018-06-15
修回日期:2018-00-00
作者简介:王欢(1994—),男,硕士研究生,研究方向为纺织复合材料
通信作者:马崇启,教授,12197759@qq.com
更新日期/Last Update: 2018-12-07