|本期目录/Table of Contents|

[1]朱聪聪,左保齐.预拉伸对不同盐质量分数再生丝素膜的影响[J].丝绸,2019,56(1):191101.[doi:10.3969/j.issn.1001-7003.2019.01.001]
 ZHU Congcong,ZUO Baoqia.Influence of pre-stretching on regenerated silk fibroin film with different salt mass fraction[J].Journal of Silk,2019,56(1):191101.[doi:10.3969/j.issn.1001-7003.2019.01.001]
点击复制

预拉伸对不同盐质量分数再生丝素膜的影响(PDF)
分享到:

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
56
期数:
2019年1期
页码:
191101
栏目:
研究与技术
出版日期:
2019-01-20

文章信息/Info

Title:
Influence of pre-stretching on regenerated silk fibroin film with different salt mass fraction
文章编号:
1001-7003(2019)01-0001-07
作者:
朱聪聪左保齐
苏州大学 a. 纺织与服装工程学院;b.现代丝绸国家工程实验室,江苏 苏州 215123
Author(s):
ZHU Congcong ZUO Baoqia
a. College of Textiles and Clothing Engineering; b. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
关键词:
再生丝素膜拉伸外观结构二级结构机械性能
Keywords:
RSF film stretching appearance structure secondary structure mechanical properties
分类号:
TS 102.1;R318.08
doi:
10.3969/j.issn.1001-7003.2019.01.001
文献标志码:
A
摘要:
丝素材料被广泛应用于生物医药领域,这是由于丝素材料具有低免疫源性,可降解且具备良好的力学性能。很多文献表明相比于传统溶解丝素的方法,甲酸/盐溶解丝素制备的再生丝素材料具有更好的机械性能,然而,当再生丝素应用于对力学性能要求更高的骨填充材料时,甲酸/盐溶解丝素制备的再生丝素材料力学性能还是不足的。文章采用甲酸/氯化钙溶解丝素制备再生丝素膜,然后对其进行预拉伸处理。结果表明,通过预拉伸处理的再生丝素膜具备更高的力学性能,选用4%的盐质量分数溶解时,可以得到稳定的二级结构(silk II)。研究结果对丝素材料应用于生物医药领域具有潜在的应用价值。
Abstract:
Silk fibroin materials are widely used in the field of biomedicine because they have low immunogenicity, biodegradablity and good mechanical properties. Many literatures have shown that regenerated silk fibroin materials prepared by formic acid/salt dissolved silk fibroin have better mechanical properties than regenerated silk fibroin materials prepared with traditional methods of dissolving silk fibroin. However, when regenerated silk fibroin is applied in a bone filler material that requires higher mechanical properties, the mechanical properties of the regenerated silk fibroin material prepared by formic acid/salt dissolved silk fibroin are still insufficient. In this paper, regenerated silk fibroin film was prepared by dissolving silk fibroin with formic acid/calcium chloride, and then pre-stretched. The results show ed that the regenerated silk fibroin film after pre-stretching had higher mechanical properties, and a stable secondary structure (silk II) c ould be obtained when 4% salt mass fraction was used for dissolution. The research results have potential application value for the application of silk fibroin materials in the field of biomedicine.

参考文献/References:

[1]BAI H, JU J, ZHENG Y, et al. Functional fibers with unique wettability inspired by spider silks [J]. Advanced Materials, 2012, 24(20):2786-2791.
[2]ZARKOOB S, EBY R K, RENEKER D H, et al. Structure and morphology of electrospun silk nanofibers [J]. Polymer, 2004, 45(11):3973-3977.
[3]SHAO Z, VOLLRATH F. Surprising strength of silkworm silk [J]. Nature, 2002, 418(6899):741.
[4]WU G, DENG H, JIANG T, et al. Regulating the gaps between folds on the surface of silk fibroin membranes via LBL deposition for improving their biomedical properties[J]. Colloids & Surfaces B Biointerfaces, 2017, 154(1): 228-238.
[5]ZHENG Y, BAI H, HUANG Z, et al. Directional water collection on wetted spider silk [J]. Nature, 2010, 463(7281):640-643.
[6]HUANG Z, CHEN Y, ZHENG Y, et al. Capillary adhesion of wetted cribellate spider capture silks for larger pearly hanging-drops [J]. Soft Matter, 2011, 7(19): 9468-9473.
[7]CHEN Y, HE J, WANG L, et al. Excellent bead-on-string silkworm silk with drop capturing abilities [J]. Journal of Materials Chemistry A, 2013, 2(5):1230-1234.
[8]于同隐, 梅娜, 陈光, 等. 丝素蛋白在组织工程中的应用[J]. 复旦学报(自然科学版), 2003, 42(6): 828-832.
YU Tongyin, MEI Na, CHEN Guang, et al. Application of silk fibroin in tissue engineering [J]. Journal of Fudan University(Nature Science Edition), 2003, 42(6):828-832.
[9]VEPARI C, KAPLAN D L. Silk as a Biomaterial [J]. Progress in Polymer Science, 2007, 32(8/9): 991-1007.
[10]CAO T T, ZHANG Y Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines [J]. Materials Science & Engineering C, 2016, 61:940-952.
[11]LOTZ B, CESARI F C. The chemical structure and the crystalline structures of Bombyx mori, silk fibroin [J]. Biochimie, 1979, 61(2):205-214.
[12]ZHOU C Z, CONFALONIERI F, JACQUET M, et al. Silk fibroin: structural implications of a remarkable amino acid sequence [J]. Proteins Structure Function & Bioinformatics, 2001, 44(2):119-122.
[13]ASAKURA T, ASHIDA J, YAMANE T, et al. A repeated beta-turn structure in poly(Ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance [J]. Journal of Molecular Biology, 2001, 306(2):291-305.
[14]SOFIA S, MCCARTHY M B, GRONOWICZ G, et al. Functionalized silk-based biomaterials for bone formation [J]. Journal of Biomedical Materials Research, 2001, 54(1):139-148.
[15]YANG Y, CHEN X, FEI D, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro [J]. Biomaterials, 2007, 28(9):1643-1652.
[16]HOFMANN S, FOO C T, ROSSETTI F, et al. Silk fibroin as an organic polymer for controlled drug delivery [J]. Journal of Controlled Release, 2006, 111(2):219-227.
[17]WENK E, WANDREY A J, MERKLE H P, et al. Silk fibroin spheres as a platform for controlled drug delivery [J]. Journal of Controlled Release, 2008, 132(1):26-34.
[18]吴章伟, 冯新星, 朱海霖, et al. 不同溶解体系的丝素蛋白分子质量及对再生丝素膜性能的影响 [J]. 蚕业科学, 2010, 36(4): 707-712.
[19]WANG Q, CHEN Q, YANG Y, et al. Effect of various dissolution systems on the molecular weight of regenerated silk fibroin [J]. Biomacromolecules, 2013, 14(1): 285-COVER4.
[20]CHO H J, KI C S, OH H, et al. Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions [J]. International Journal of Biological Macromolecules, 2012, 51(3): 336-341.
[21]Chen X , Knight D P , Shao Z , et al. Regenerated Bombyx silk solutions studied with rheometry and FTIR[J]. Polymer, 2001, 42(25):09969-09974.
[22]Cho H J , Ki C S , Oh H , et al. Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions[J]. International Journal of Biological Macromolecules, 2012, 51(3):336-341.
[23]SIONKOWSKA A, LEWANDOWSKA K, MICHALSKA M, et al. Characterization of silk fibroin 3D composites modified by collagen [J]. Journal of Molecular Liquids, 2016, 215:323-327.
[24]LV X, LI Z, CHEN S, et al. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering [J]. Biomaterials, 2016, 84:99-110.
[25]MARSANO E, CORSINI P, AROSIO C, et al. Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres [J]. International Journal of Biological Macromolecules, 2005, 37(4):179-188.
[26]XING T. Study of the Solubility of silk fibroin and cellulose using NMMO and preparation of the blend films [J]. Journal of Textile Research, 2003.
[27]MING J, LIU Z, BIE S, et al. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method [J]. Materials Science & Engineering C, 2014, 37(37):48-53.
[28]ZHANG F, LU Q, MING J, et al. Silk dissolution and regeneration at the nanofibril scale [J]. Journal of Materials Chemistry B, 2014, 2(24): 3879-3885.
[29]ZHANG F, LU Q, YUE X, et al. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent[J]. Acta biomaterialia, 2015, 12:139-145.
[30]MORI H, TSUKADA M. New silk protein: modification of silk protein by gene engineering for production of biomaterials [J]. Reviews in Molecular Biotechnology, 2000, 74(2):95-103.
[31]吴惠英, 左保齐, 周燕. 氯化钙/甲酸溶解体系下氯化钙质量分数对蚕丝溶解性的影响[J]. 纺织学报, 2014, 35(12):1-5.
WU Huiying, ZUO Baoqi, ZHOU Yan. Effect of CaCl2 concentration on solubility of silk in CaCl 2-formid acid system [J]. Journal of Textile Research, 2014, 35(12):1-5.
[32]FENG Z, YOU X, HAO D, et al. Facile Fabrication of robust silk nanofibril films via direct dissolution of Silk in CaCl2–formic acid solution[J]. Acs Applied Materials & Interfaces, 2015, 7(5):3352.
[33]王鹏, 左保齐. 不同盐/甲酸溶解体系下丝素膜的制备及性能表征[J]. 丝绸, 2016, 53(7):18-22.
WANG Peng, ZUO Baoqi. Preparation of silk fibroin films in different salt/formic acid dissolution system and its property characterization [J]. Journal of Silk, 2016, 53(7):18-22.
[34]HA S W, TONELLI A E, HUDSON S M. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning [J]. Biomacromolecules, 2005, 6(3):1722-1731.
[35]UM I C, KWEON H Y, LEE K G, et al. The role of formic acid in solution stability and crystallization of silk protein polymer [J]. International Journal of Biological Macromolecules, 2003, 33(4):203-213.
[36]CHEN X, SHAO Z, MARINKOVIC N S, et al. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy [J]. Biophysical Chemistry, 2001, 89(1):25-34.
[37]DRUMMY L F, PHILLIPS D M, StONE M O, et al. Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films [J]. Biomacromolecules, 2005, 6(6):3328-3333.
[38]LU Q, WANG X, LU S, et al. Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process[J]. Biomaterials, 2011, 32(4):1059-1067.
[39]MAGOSHI J, NAKAMURA S. Studies on physical properties and structure of silk: glass transition and crystallization of silk fibroin[J]. Journal of Applied Polymer Science, 1975, 19(4):1013-1015.
[40]YIN J, CHEN E, PORTER D, et al. Enhancing the toughness of regenerated silk fibroin film through uniaxial extension [J]. Biomacromolecules, 2010, 11(11): 2890-2895.
[41]SU D, YAO M, LIU J, et al. Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains.[J]. Acs Appl Mater Interfaces, 2017, 9(20):17489-17498.

备注/Memo

备注/Memo:
收稿日期:2018-06-29
修回日期:2018-00-00
作者简介:朱聪聪(1994—),女,硕士研究生,研究方向为丝蛋白生物材料
通信作者:左保齐,教授,bqzuo@suda.edu.cn
更新日期/Last Update: 2018-12-07