|本期目录/Table of Contents|

[1]唐 琪,张 辉,陈天宇,等.不同TiO2前驱体水热改性聚酯纤维结构与光催化性能研究[J].丝绸,2019,56(9):091103.
 TANG Qi,ZHANG Hui,CHEN Tianyu,et al.Structure and photocatalytic properties of polyester fibers treated with different titanium dioxide precursors under hydrothermal conditions[J].Journal of Silk,2019,56(9):091103.
点击复制

不同TiO2前驱体水热改性聚酯纤维结构与光催化性能研究(PDF)
分享到:

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
56
期数:
2019年9期
页码:
091103
栏目:
研究与技术
出版日期:
2019-09-20

文章信息/Info

Title:
Structure and photocatalytic properties of polyester fibers treated with different titanium dioxide precursors under hydrothermal conditions
文章编号:
1001-7003(2019)0-0000-00
作者:
唐 琪张 辉陈天宇陈文豆
西安工程大学 纺织科学与工程学院,西安 710048
Author(s):
TANG Qi ZHANG Hui CHEN Tianyu CHEN Wendou
School of Textile Science & Engineering, Xian Polytechnic University, Xian 710048, China
关键词:
聚酯纤维TiO2亚甲基蓝光催化捕获剂
Keywords:
polyester fibers TiO2 methylene blue photocatalysis scavengers
分类号:
TS
doi:
-
文献标志码:
A
摘要:
采用水热合成技术,分别使用钛酸四丁酯、硫酸钛和四氯化钛在聚酯纤维表面负载纳米TiO2颗粒,比较了不同TiO2前驱体改性聚酯纤维紫外线辐照光催化降解亚甲基蓝染料的能力,并使用捕获剂探索硫酸钛合成的TiO2颗粒光催化降解染料过程中产生的活性物种。结果表明,不同TiO2前驱体水热改性的聚酯纤维光催化性能差异较大,硫酸钛得到的TiO2改性聚酯纤维光催化性能最优,主要是因为硫酸钛水热生成并负载到聚酯纤维表面的锐钛矿型TiO2颗粒尺寸小,分布均匀且负载量大,光催化降解亚甲基蓝过程中产生的活性物种以羟基自由基为主导并伴有空穴和超氧自由基。
Abstract:
Based on the hydrothermal method, tetrabutyl titanate, titanium sulfate, and titanium tetrachloride as the titanium dioxide precursors loaded nano-TiO2 particles in the surface of polyester fiber, and the ability of PET fibers modified by different TiO2 precursors to photocatalytically degrade methylene blue dye was compared under ultraviolet irradiation conditions. The active species generated by the PET fibers treated by titanium sulfate in the photocatalytic degradation process were explored by the scavengers. The experimental results show that the photocatalytic activities of the TiO2-coated PET fibers were greatly influenced by the titanium dioxide precursors. The photocatalytic property of TiO2-modified PET fibers gained by titanous sulfate was optimal, mainly because titanous sulfate was generated by hydrothermal method and loaded on anatase-type TiO2 particles on the surface of polyester fiber, and TiO2 particles were small in size and distributed evenly, with large loading capacity. Besides, the active species generated during photocatalytic degradation of methylene blue were mainly hydroxyl radical, accompanied by holes and superoxide radicals

参考文献/References:

[1]ZHANG J J, LI Y X, LI L, et al. Dual functional N-doped TiO2-carbon composite fibers for efficient removal of water pollutants [J]. ACS Sustainnable Chemistry and Engineering, 2018, 6(10): 12893-12905.
[2]REDDY K R, HASSAN M, GOMES V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis [J]. Applied Catalysis A-General, 2015, 489: 1-16.
[3]MA X C, DAI Y, GUO M, et al. Insights into the role of surface distortion in promoting the separation and transfer of photogenerated carriers in anatase TiO2 [J]. Journal of Physical Chemistry C, 2013, 117(46): 24496-24502.
[4]FUJISHIMA A, ZHANG X T. Titanium dioxide photocatalysis: present situation and future approaches [J]. Comptes Rendus Chimie, 2006, 9(5): 750-760.
[5]CHEN X B, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications [J]. Chemical Reviews, 2007, 38(41): 2891-2959.
[6]TAN S J, WANG B. Active sites for adsorption and reaction of molecules on rutile TiO2 (110) and anatase TiO2 (001) surfaces [J]. Chinese Journal of Chemical Physics, 2015, 28(4): 383-395.
[7]CHEN X, MAO S S, NALWA H S. Titanium Dioxide Nanomaterials [M]. Chichester: Encyclopedia of Inorganic and Bioinorganic Chemistry, 2007: 839-851.
[8]HOYER P. Formation of a titanium dioxide nanotube array [J]. Langmuir, 1996, 12(6): 1411-1413.
[9]ZHANG X Y, QIN J Q, XUE Y N, et al. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods [J]. Scientific Reports, 2014, 4(1): 4596.
[10]JIU J T, WANG F M, ISODA S, et al. Highly efficient dye-sensitized solar cells based on single crystalline TiO2 nanorod film [J]. Chemistry Letters, 2005, 34(11): 1506-1507.
[11]KHAN M M, ANSARI S A, PRAGHAN D, et al. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies [J]. Journal of Materials Chemistry A, 2014, 2(3): 637-644.
[12]DAHL M, LIU Y D, YIN Y D. Composite titanium dioxide nanomaterials [J]. Chemical Reviews, 2014, 114(19): 9853-9889.
[13]ZHANG H, FANG L, HONG Z. Immobilization of TiO2 nanoparticles on PET fabric modified with silane coupling agent by low temperature hydrothermal method [J]. Fibers and Polymers, 2013, 14(1): 43-51.
[14]ZHANG H, ZHU H, SUN R J. Fabrication of photocatalytic TiO2 nanoparticle film on PET fabric by hydrothermal method [J]. Textile Research Journal, 2012, 82(8): 747-754.
[15]ZHANG H, YANG L. Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method [J]. Thin Solid Films, 2012, 520(18): 5922-5927.
[16]ZHANG H, YANG L. Imbuing titanium dioxide into cotton fabric using tetrabutyl titanate by hydrothermal method [J]. Journal of the Textile Institute, 2012, 103(8): 885-892.
[17]ZHANG H, ZHU L L, SUN R J. Structure and properties of cotton fibers modified with titanium sulfate and urea under hydrothermal conditions [J]. Journal of Engineered Fibres and Fabrics, 2014, 9(1): 67-75.
[18]ZHANG Z, ZHU H. Modification of wool fabric treated with tetrabutyl titanate by hydrothermal method [J]. Journal of the Textile Institute, 2012, 103(10): 1108-1115.
[19]ZHANG H, ZHANG X T. Modification and dyeing of silk fabric treated with tetrabutyl titanate by hydrothermal method [J]. Journal of Natural Fibers, 2014, 11(1): 25-38.
[20]CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chemical Reviews, 2010, 110(11): 6503-6570.
[21]ILKHECHI N N, KALEJI B K. Optical and structure properties of nanocrystalline titania powders with Cu dopant [J]. Silicon, 2017, 9(2): 285-291.
[22]CHENG F, ZHANG T, ZHANG Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies [J]. Angewandte Chemie International Edition, 2013, 125(9): 2534-2537.
[23]TOMPSETT D A, PARKER S C, ISLAM M S. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance [J]. Journal of the American Chemical Society, 2014, 136(4): 1418-1426.
[24]ZHANG Y, DENG B, ZHANG T R, et al. Shape Effects of Cu2O polyhedral microcrystals on photocatalytic activity [J]. Journal of Physical Chemistry C, 2010, 114(11): 5073-5079.
[25]QIAN K, SWEENY B C, JOHNSTON-PECK A C, et al. Surface plasmon-driven water reduction: Gold nanoparticle size matters [J]. Journal of the American Chemical Society, 2014, 136(28): 9842-9845.
[26]REBER J F, MEIER K. Photochemical production of hydrogen with zinc sulfide suspensions [J]. Journal of Physical Chemistry, 1984, 88(24): 5903-5913.
[27]WANG H K, ROGACH A L. Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications [J]. Chemistry of Materials, 2014, 26(1): 123-133.
[28]任成军, 钟本和, 周大利, 等. 水热法制备高活性TiO2光催化剂的研究进展[J].稀有金属, 2004, 28(5): 903-906.
REN C, ZHONG Benhe, ZHOU Dali, et al. Research advances for preparation of highly-active TiO2 photocatalyst with hydrothermal method [J]. Chinese Journal of Rare Metals, 2004, 28(5): 903-906.
[29]ZHENG X Z, LI D Z, LI X F, et al. Photoelectrocatalytic degradation of rhodamine B on TiO? photonic crystals [J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15299-15306.
[30]HOU Y, LI X Y, ZHAO Q D, et al. Role of hydroxyl radicals and mechanism of escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation [J]. Environmental Science & Technology, 2012, 46(7): 4042-4050.
[31]ZHANG L S, WONG K H, YIP H Y, et al. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: The role of diffusing hydroxyl radicals [J]. Environmental Science & Technology, 2010, 44(4): 1392-1398.
[32]RANJITH K S, SENTHAMIZHAN A, BALUSAMYA B, et al. Nanograined surface shell wall controlled ZnO-ZnS core-shell nanofibers and their shell wall thickness dependent visible photocatalytic properties [J]. Catalysis Science & Technology, 2017, 7(5): 1167-1180.
[33]YAN T, LIU H Y, GAO P C, et al. Facile synthesized highly active BiOI/Zn2GeO4 composites for the elimination of endocrine disrupter BPA under visible light irradiation [J]. New Journal of Chemistry, 2015, 39(5): 3964-3972.
[34]YIN M C, LI Z S, KOU J H, et al. Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B System [J]. Environmental Science and Technology, 2009, 43(21): 8361-8366.
[35]SONG S , XU L J, HE Z Q, et al. Mechanism of the photocatalytic degradation of Cl reactive black 5 at pH 12.0 using SrTiO3/CeO2 as the catalyst [J]. Environmental Science and Technology, 2007, 41(16): 5846-5853.
[36]LUO Q, LI X W, CAI Q Z, et al. Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation [J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(11): 1045-1051.
[37]SUN L N, WANG Z J, ZHANG J Z, et al. Visible and near-infrared luminescent mesoporous titania microspheres functionalized with lanthanide complexes: microstructure and luminescence with visible excitation [J]. Rsc Advances, 2014(4): 28481-28489.
[38]ZUNIC V, VUKOMANOVIC M, SKAPIN S D, et al. Photocatalytic properties of TiO2 and TiO2/Pt: a sol-precipitation, sonochemical and hydrothermal approach [J]. Ultrasonics Sonochemistry, 2014, 21(1): 367-375.
[39]CALATAYUD J M, PARDO P, ALARCON J. Hydrothermal-mediated synthesis of orange Cr, Sb-containing TiO2 nano-pigments with improved microstructure [J]. Dyes and Pigments, 2017, 139: 33-41.
[40]YEH S W, CHEN Y L, HSI C S, et al. Thermal behavior and phase transformation of TiO2 nanocrystallites prepared by a coprecipitation route [J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Science, 2014, 45(1): 261-268.
[41]TRUONG Q D, HOA H T, LE T S. Rutile TiO2 nanocrystals with exposed {331} facets for enhanced photocatalytic CO2 reduction activity [J]. Journal of Colloid and Interface Science, 2017, 504: 223-229.
[42]WANG C L, HWANG W S, CHU H L, et al. Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process [J]. Ceramics International, 2016, 42(11): 13136-13143.
[43]INABA R, FUKAHORI T, HAMAMOTO M, et al. Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase [J]. Journal of Molecular Catalysis A-Chemical, 2006, 260(1/2): 247-254.
[44]LASKARAKIS A, LOGETHETIDIS S. Study of the electronic and vibrational properties of poly (ethylene terephthalate) and poly (ethylene naphthalate) films [J]. Journal of Applied Physics, 2007, 101(5): 053503.
[45]LOPEZ R, GOMEZ R. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study [J]. Journal of Sol-gel Science and Technology, 2012, 61(1): 1-7.
[46]CAO J, XU B Y, LUO B D, et al. Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2 [J]. Applied Surface Science, 2011, 257(16): 7083-7089.
[47]CAO J, XU B, LUO B D, et al. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties [J]. Catalysis Communications, 2011, 13(1): 63-68.
[48]JING L Q, FU H G, WANG B Q, et al. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles [J]. Applied Catalysis B-Environmental, 2006, 62(3/4): 282-291.
[49]刘瑶, 杜平, 王玉萍. 染料化合物在改性介孔TiO2上的吸附[J]. 环境化学, 2014(6): 976-984.
LIU Yao, DU Ping, WANG Yuping. Adsorption of dye compounds to modified mesoporous TiO2 [J]. Environmental Chemistry, 2014,33(6): 976-984.
[50]LIU B S, WEN L P, NAKATA K, et al. Polymeric adsorption of methylene blue in TiO2 colloids-highly sensitive thermochromism and selective photocatalysis [J]. Chemistry-A European Journal, 2012, 18(40): 12705-12711.
[51]GALAGAN Y, SU W F. Reversible photoreduction of methylene blue in acrylate media containing benzyl dimethyl ketal [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2008, 195(2/3): 378-383.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(51873169)
收稿日期:2019-02-19
修回日期:2019-0-00
作者简介:唐琪(1993—),女,硕士研究生,研究方向为纺织材料与纺织品设计
通信作者:张辉,教授,hzhangw532@xpu.edu.cnWendou
更新日期/Last Update: 2019-08-01